




Industry 4.0  
Ecological  
& energy transition

Support  
Expertise  
R&D

**CETIM**, your global technological engineering partner  
*Towards a sustainable and efficient industry*

**CETIM** MATCOR

1



*Cetim-Matcor*  
*Company Presentation*



2

1

## Cetim Group

The Technological Centre of Mechanics, steered by Mechanical Engineering Industrials



- Since 1965, Cetim is a leading engineering group, supporting Mechanical Engineering Companies' Access to R&D and Innovation for their Competitiveness
- Main technology partner for Industry 4.0, digital roll out & sustainability
- French leader, worldwide player



3

3

## R&T Institute and Engineering Company

1000+ Experts in France, Morocco, Tunisia, Singapore, Malaysia, Japan  
150 experts participating in Standardization committees (ISO, CEN, ASME...)



**20** - Main locations  
France & Worldwide...



**1,100** - Employees



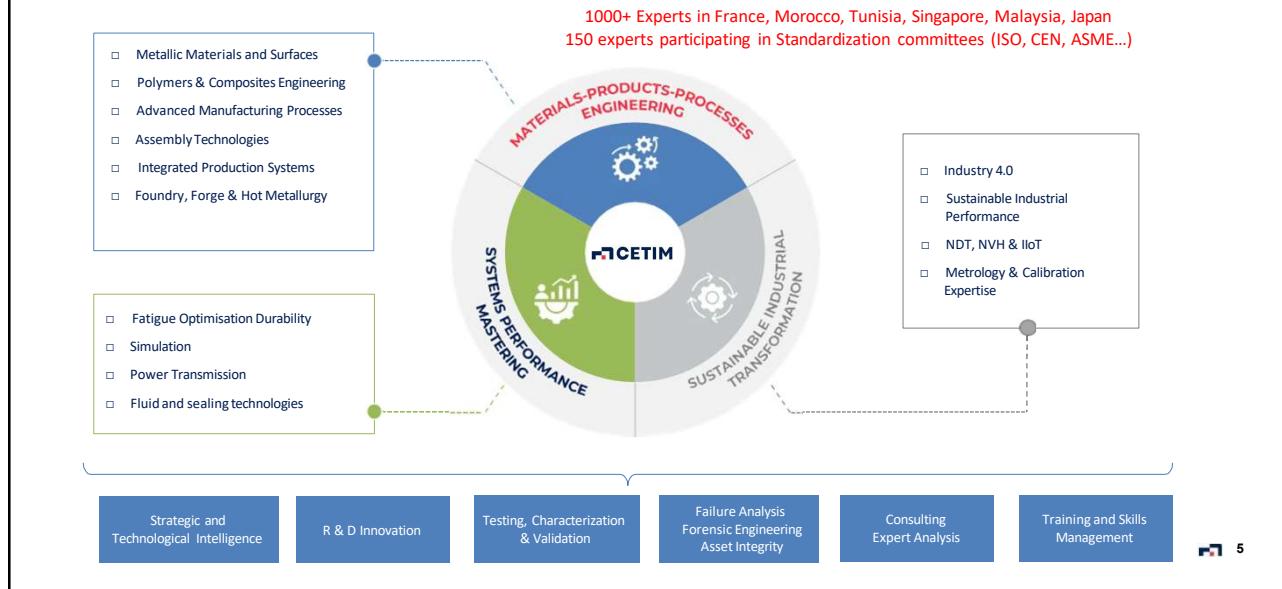
**180 M€** - Annual sales  
including 90 M€ in R&D and  
Innovation projects & programs



**20%** - International Sales



**14,000 +** Active annual  
clients worldwide




4

4

## Our fields of expertise

Unique R&D capabilities and Multi-disciplinary competencies



5

## Cetim-Matcor Technology & Services Pte Ltd

Cetim Asia Pacific HQ, Singapore



- Established in Singapore in 1992
- Merged with Cetim in 2018
- Leading Specialist in Failure Analysis, Forensic Engineering, Materials (Metallic / Composite), Corrosion, Power Transmissions, Asset Integrity Management, NDT, RBI, RLA, 3D Scanning and Data processing, Training...
- Supporting all industries, over 10,000 projects completed since inception

6

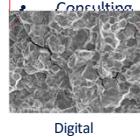
6

## Our APAC Centre of Excellence

Extend the LIFE CYCLE of your industrials Products and Systems



7


## Failure Analysis & Forensic Engineering

Our clients are facing

- a malfunction
- a non-performance (insufficient efficiency...)
- an abnormal wear
- an operating anomaly (noise, vibration....)
- a risk of rupture (crack, corrosion...)
- a suspected defect (NDT indication, ...)
- quality department)
- a mixture of parts
- a consequence of an accident, fire, deformation

We provide

- Site Investigations (non-compliance detected by the customer)
- Laboratory Examinations
- Material Characterization
- Fire Investigation
- Consulting
- Recommendations
- Expert Witness (litigation and insurance)

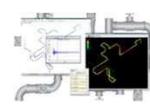


Digital Fractography

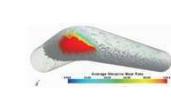


Rotating Machine Failure

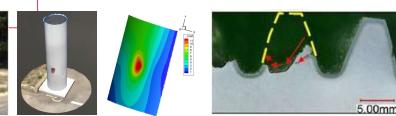



Digitalization




On-site inspection




Lab Testing



CFD - 2D



CFD - 3D



From failure to design

8

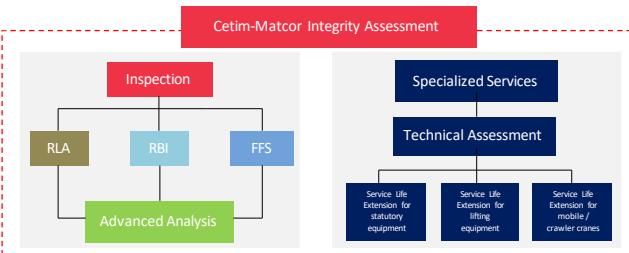
8

## Failure Analysis & Forensic Investigation Lab

Some of our Metallography, Analysis and Testing Equipment



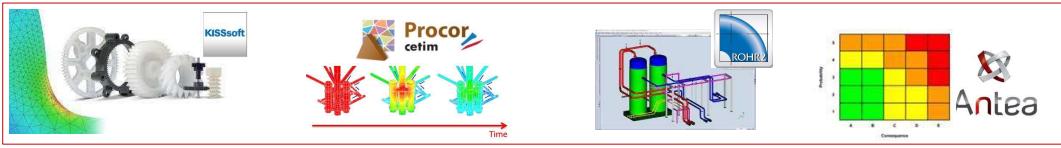

Documentation → Sample Preparation → Testing → Investigation → Detailed Analysis


For deep and accurate assessment

9

## Asset Integrity

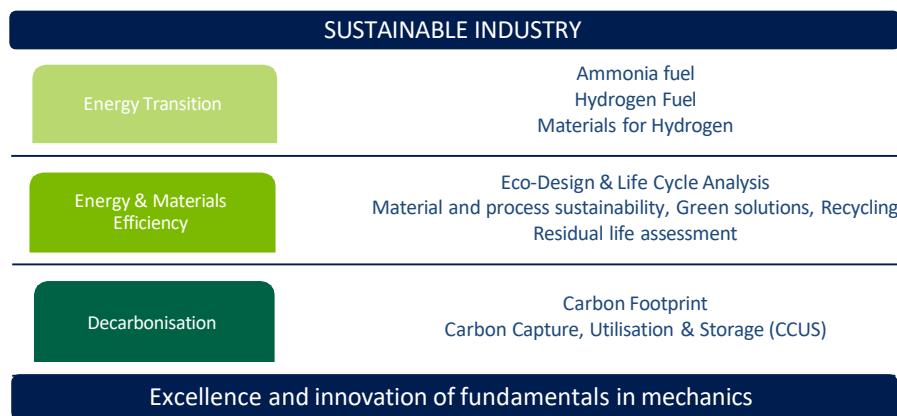



Cetim-Matcor Integrity Assessment



- Inspection Planning > Inspection > RBI & RLA
- Suitability for continued operation > Inspection, FFS, RLA, Advanced Analysis
- Life Assessment > Inspection, RLA, Advanced Analysis
- Matcor has the capability to provide comprehensive services on Integrity Assessment**

Pressure Vessels      Metallic Structures      Rotating Equipments


Phased array UT      Thickness Inspection by UT



10

# Sustainable Industry

Identified Frameworks in Cetim Matcor



11

11

## R&D at CETIM-MATCOR

*Main Themes*



12

12

## Research & Development

Collaborative Projects examples

### Additive Manufacturing for Energy Transition



Joint Lab – Process and Part Qualification in WAAM

### Asset Integrity Management for Sustainable Industry



Effective Structural Health Monitoring, Predictive Maintenance through smart sensors and Hybrid AI

### Artificial Intelligence in Failure Analysis



Applied research in deep learning for fractography and optimized workflow

13

13

## Our Training Centre

Learn to Extend the LIFE CYCLE of your industrial Products and Systems



### Methodology

- Failure Analysis & Forensic Engineering
- Damage Mechanisms
- Risk-Based Inspection
- Life Cycle Analysis
- Residual Life Assessment

### Material Expertise

- Corrosion Fundamentals
- Metallic Materials
- Composites
- Metal Additive Manufacturing

### Product Performance

- Shafts, Gears and Bearings
- Cranes
- Pipes
- Calculations / Simulation

Also available  
In Partnership with:



Standard & customised  
training are available

<https://cetim-matcor.com/training-courses>

14

14

## Certifications and Licenses

ISO 17020



ISO 17025



HSE



PRATT & WHITNEY & THE SINGAPORE AIR FORCE  
End Users Licenses D1062099 & D1061996 for Military Gas Turbine Engine



COMPANY'S NAME: MATCOR TECHNOLOGY &amp; SERVICES (M) SDN BHD.

LICENSE NO.: 110852A

LICENSE PERIOD: 15.12.2021 - 15.03.2025

| APPROVED LICENSE CATEGORIES |                                                |                   |                               |
|-----------------------------|------------------------------------------------|-------------------|-------------------------------|
| LIC PROVISIONAL             | Service / Supplier Code                        | Mode of Operation | Present / New (If Applicable) |
| License & Registration      | 21000000 Risk Based Inspection                 | Self Operated     | Not Applicable                |
| License & Registration      | 24000000 Rotating Equipment Condition          | Self Operated     | Not Applicable                |
| License & Registration      | 2514-0005 Piping Inspection                    | Self Operated     | Not Applicable                |
| License & Registration      | 2514-5005 Pressure Vessel (Fired) Inspection   | Self Operated     | Not Applicable                |
| License & Registration      | 2514-5006 Pressure Vessel (Unfired) Inspection | Self Operated     | Not Applicable                |
| License & Registration      | 2514-0005 Coding Tower Inspection              | Self Operated     | Not Applicable                |
| License & Registration      | 25100000 Directive Testing/Tolerance Analysis  | Self Operated     | Not Applicable                |
| License & Registration      | 2514-0005 Structure Inspection                 | Self Operated     | Not Applicable                |
| License & Registration      | 2514-0005 Pressure Vessel (Unfired) Inspection | Self Operated     | Not Applicable                |



15

15

## Our clients and partners

Energy Sector:



Oil &amp; Gas Sector:



Transport Sector:



Running projects in partnership with:



Engineering Sector:



Education Sector:



Health Sector:



Authorities:



16

16



## Contact

**Pauline Le BORGNE**

+65 6661 0727

+65 9325 4552

[pauline.LB@cetim-matcor.com](mailto:pauline.LB@cetim-matcor.com)

**Extend the life cycle of your  
industrial products and systems**

17



## Acoustic Emission Testing

A global NDT technology for  
Asset Integrity and In-service  
Inspection

18

## Acoustic Emission Testing

### Summary



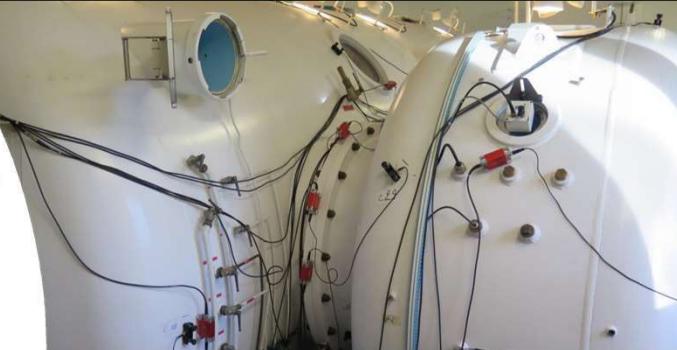
**□ A global NDT technology for Asset Integrity and In-service Inspection**

- Scope and objectives
- How this works
- Codes and Standards

**□ Steps Involved in AET**

**□ Markets and Applications for AET**

**□ Acoustic Emission : A monitoring technique**




19



**Acoustic Emission**  
**A long & rich history at CETIM**

International recognition from the 1970s



Very strong growth in our activity from 2000 (mainly Pressure Equipment controls)



Today, CETIM has one of the biggest parks in the world in terms of data acquisition systems (> 400 channels)

&

Strong Industry experience + many monitoring experiences for more than 3 decades

20

## Acoustic emission testing – Scope and Objectives

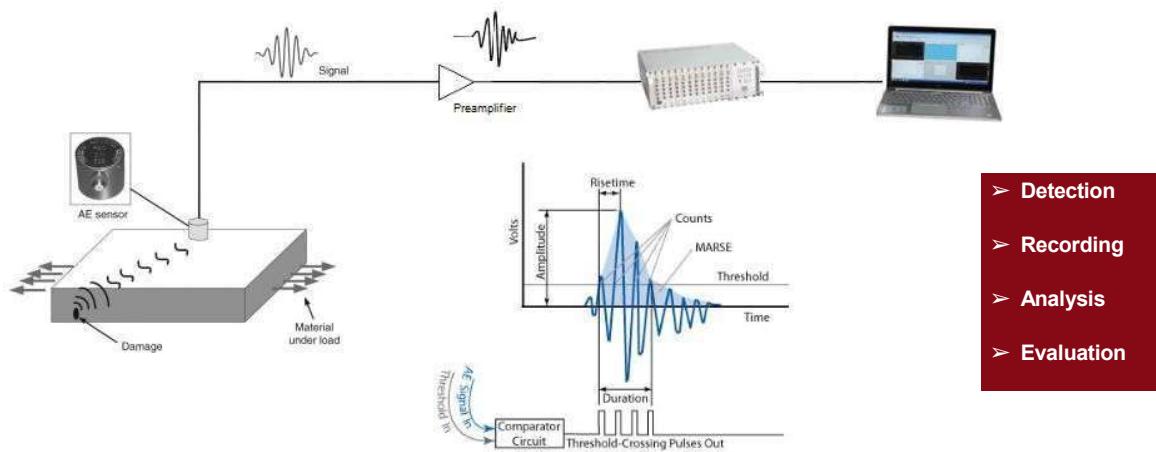
### Scope

Acoustic Emission Testing (AET) is a **global NDT** technique that detects and monitors the release of ultrasonic stress waves from localized sources when asset is under stress.

### Objectives of AET

- Monitor the equipment behavior during hydraulic/pneumatic pressure load (case of PV) or other type of load (tank, bridge, ...)
- Early Detect critical defects which might lead to premature deterioration of the asset.
- Give a diagnosis on the health status of the asset in order to undertake if necessary complementary non-destructive testing on the emissive areas localized by AE.

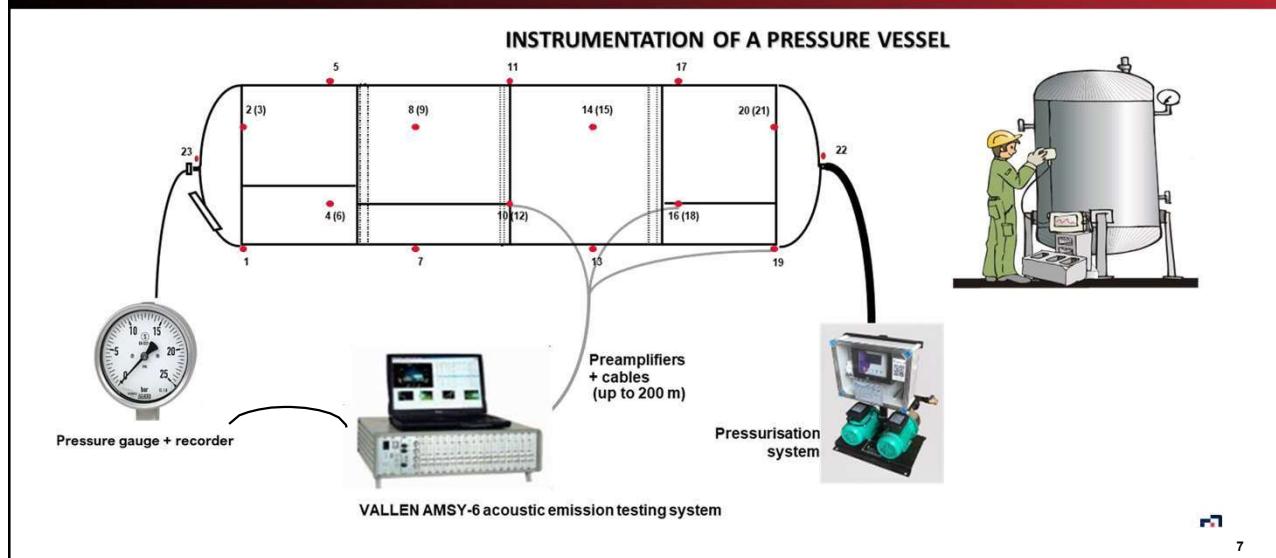



21

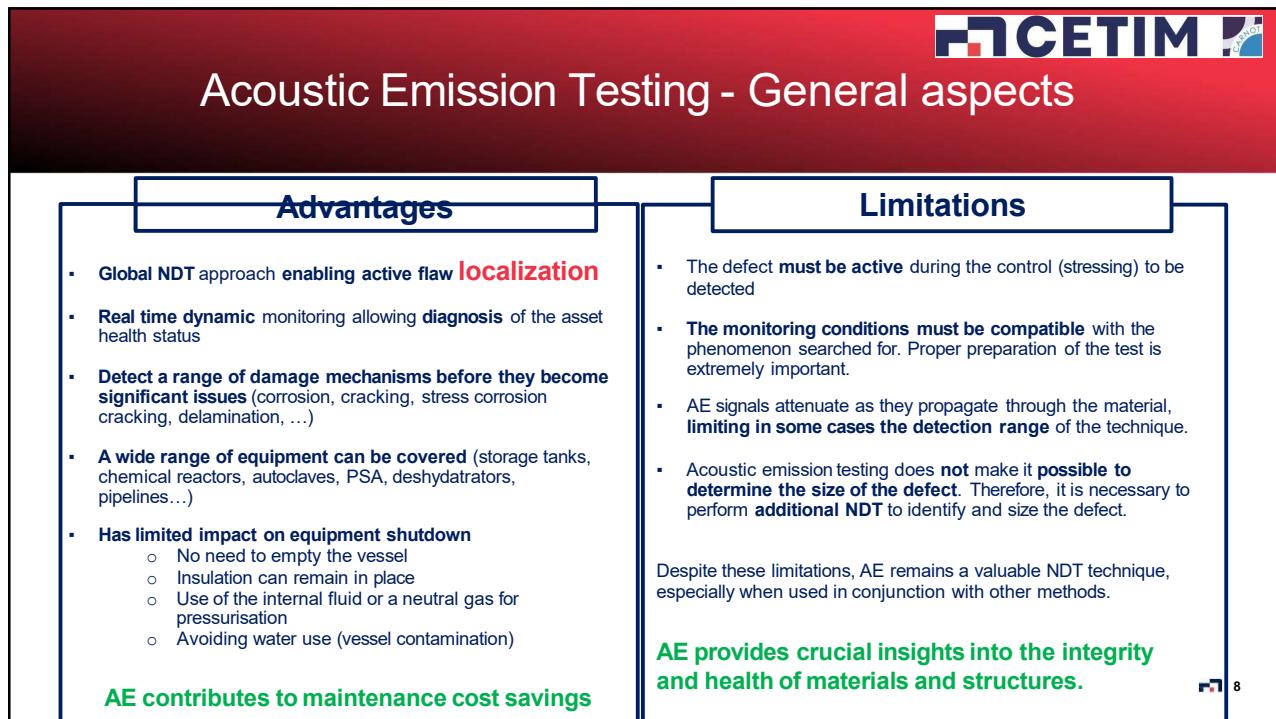
## CETIM

### Acoustic Emission Testing – How this works

Acoustic Emission Testing □ Sismology


A 'passive' technique.

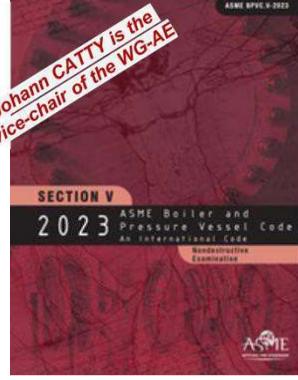



6

22

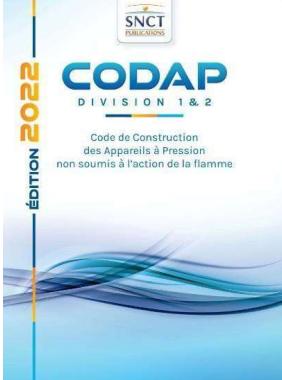
## Acoustic Emission Testing – On site operations




23



24


## Acoustic Emission Testing Codes and Standards – Pressure Vessels

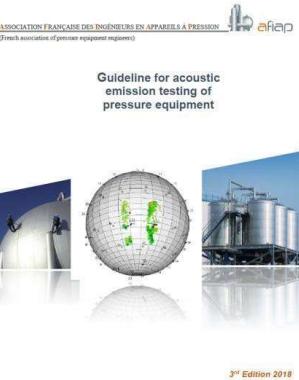
**CETIM** SNCT



**ASME BPVC.V-2023**  
Johann CATTY is the  
vice-chair of the WG-AE  
**SECTION V**  
**2023** ASME Boiler and  
Pressure Vessel Code  
ASME International  
Non-destructive  
Examination

**Article 11** : AE examination of fiber-reinforced plastic vessels  
**Article 12** : AE examination of metallic vessels during pressure testing  
**Article 13** : Continuous AE Monitoring of pressure boundary components




**2022**  
**CODAP**  
SNCT  
DIVISION 1 & 2  
Code de Construction  
des Appareils à Pression  
non soumis à l'action de la flamme

French Code for construction of unfired pressure vessels

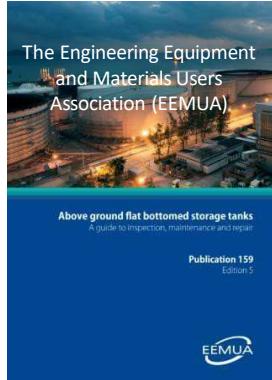


**DESP**  
Directive Équipement Sous Pression :  
connaître les principales exigences  
réglementaires de la DESP 2014/68/UE

European Unfired pressure vessels



ASSOCIATION FRANÇAISE DES INGÉNIEURS EN APPAREILS À PRESSION  
(French association of pressure equipment engineers)  
**afiap**  
**Guideline for acoustic emission testing of pressure equipment**  
3<sup>rd</sup> Edition 2018


French Guideline for AET

9

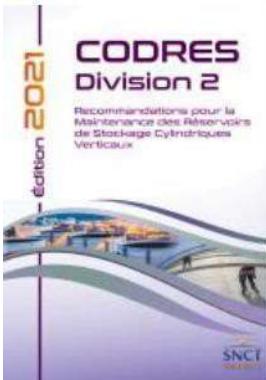
25

## Acoustic Emission Testing Codes and Standards – Aerial Storage Tanks

**CETIM** SNCT



The Engineering Equipment and Materials Users Association (EEMUA)  
Above ground flat bottomed storage tanks  
A guide to inspection, maintenance and repair  
**Publication 159**  
Edition 5


Guide for Inspection, Maintenance and Repair of above ground aerial storage tanks



Tank Inspection, Repair, Alteration, and Reconstruction  
API STANDARD 653  
FIFTH EDITION, NOVEMBER 2014  
ADDENDUM 1, APRIL 2018  
ADDENDUM 2, MARCH 2020

API 653

French Code for maintenance of aboveground aerial storage tanks



**2021**  
**CODRES**  
Division 2  
SNCT  
Recommendations pour la Maintenance des Réservoirs de Stockage Cylindriques Verticaux

Guide d'inspection et de maintenance des réservoirs aériens cylindriques verticaux

10

26

# Acoustic Emission Testing Codes and Standards – Seamless Gas-Filled, Pressure Vessels



Designation: E1419/E1419M-15a E1419/E1419M-15a (Reapproved 2020)

**Standard Practice for  
Examination of Seamless, Gas-Filled, Pressure Vessels  
Using Acoustic Emission<sup>1</sup>**

This standard is issued under the fixed designation E1419/E1419M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript revision (r) indicates an editorial change since the last revision or reapproval.

**1. Scope<sup>2</sup>**

1.1 This practice provides guidelines for acoustic emission (AE) examinations of seamless pressure vessels (tubes) of the type used for distribution or storage of industrial gases.

1.2 This practice requires pressurization to a level greater than normal use. Pressurization medium may be gas or liquid.

1.3 This practice does not apply to vessels in cryogenic service.

1.4 The AE measurements are used to detect and locate emission sources. Other nondestructive test (NDT) methods must be used to evaluate the significance of AE sources. Procedures for other NDT techniques are beyond the scope of this practice. See Note 1.

Note 1.—Shear wave, angle beam ultrasonic examination is commonly used to establish circumferential position and dimensions of flaws that produce AE. Tone of Flight Diffraction (TOD); ultrasonic examination is also commonly used for flaw sizing.

1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily equivalent; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization agreed upon by a committee of experts in the field through intergovernmental standardization bodies. This standard is intended for use in conjunction with International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

**2. Reference Documents<sup>3</sup>**

2.1 **ASTM Standards<sup>4</sup>**

E543 Specification for Agencies Performing Nondestructive Testing  
E650 Guide for Mounting Piezoelectric Acoustic Emission Sensors  
E976 Guide for Determining the Reproducibility of Acoustic Emission Sensor Response  
E1125 Terminology for Nondestructive Examinations  
E2235 Practice for Examination of Seamless, Gas-Filled, Steel Pressure Vessels Using Angle Beam Ultrasonics  
E2075 Practice for Verifying the Consistency of AE-Sensor Response Using an Acrylic Rod  
E2374 Guide for Acoustic Emission System Performance Verification

2.2 **ASNT Standards<sup>5</sup>**

Recommended Practice SNT-TC-1A for Nondestructive Testing Personnel Qualification and Certification  
ANSIFASNT CP-189 Standard for Qualification and Certification of Nondestructive Testing Personnel



**CETIM** CONFÉDÉRATION  
EUROPEENNE  
DES  
TECHNOLOGIES  
INDUSTRIELLES

27

11

# Acoustic Emission Testing Codes and Standards – Other fields of application

**Organizations issuing Codes, Standards, Practices or Guidelines for Acoustic Emission, with Abbreviation and Web Site:**

- 1 Association Française des Ingénieurs en Appareils à Pression (A.F.I.A.P.), ([www.afiap.org](http://www.afiap.org)) ..... 2
- 2 American Gear Manufacturer Association (AGMA), ([www.agma.org](http://www.agma.org)) ..... 2
- 3 American Petroleum Institute (API), ([www.api.org](http://www.api.org)) ..... 2
- 4 American Society of Mechanical Engineers (ASME), ([www.asme.org](http://www.asme.org)) ..... 2
- 5 American Society of NDT (ASNT), ([www.asnt.org](http://www.asnt.org)) ..... 3
- 6 American Society for Testing and Materials (ASTM), ([www.astm.org](http://www.astm.org)) ..... 3
- 7 Australian Standard, Australia ([www.standards.org.au](http://www.standards.org.au)) ..... 5
- 8 Committee on Acoustic Emission from Reinforced Plastics, Society of Plastics Industry (CARP/SPI), USA, ([www.socplas.org](http://www.socplas.org)) ..... 6
- 9 Comité Européen de Normalisation (CEN), Belgium, ([www.cenorm.be](http://www.cenorm.be)) ..... 6
- 10 Electric Power Research Institute (EPRI), USA, ([www.epri.com](http://www.epri.com)) ..... 7
- 11 European Committee for Electrotechnical Standardization, (CENELEC), ([www.cenelec.eu](http://www.cenelec.eu)) ..... 8
- 12 Institute of Electric and Electronic Engineers (IEEE), USA, ([www.ieee.org](http://www.ieee.org)) ..... 8
- 13 International Institute of Welding, (IIW), ([www.iiwelding.org](http://www.iiwelding.org)) ..... 8
- 14 International Organisation for Standardisation (ISO), Switzerland, ([www.iso.ch](http://www.iso.ch)) ..... 8
- 15 Japanese Industrial Standard (JIS), Japan, ([www.jsa.or.jp](http://www.jsa.or.jp)) ..... 9
- 16 Japanese Society for Non-Destructive Inspection (JSNDI), Japan ([www.jsndi.jp](http://www.jsndi.jp)) ..... 9
- 17 National Aeronautics and Space Administration (NASA), ([www.nasa.gov](http://www.nasa.gov)) ..... 9
- 18 National Association of Corrosion Engineers (NACE), USA, ([www.nace.org](http://www.nace.org)) ..... 10
- 19 Technischer Überwachungsverein (TÜV), DE, ([www.tuev-verlag.de/ProduktVerz/tabvd005.htm](http://www.tuev-verlag.de/ProduktVerz/tabvd005.htm)) ..... 10
- 20 United Kingdom Health & Safety Executive (HSE), UK ([www.hse.gov.uk](http://www.hse.gov.uk)) ..... 10

**3 American Petroleum Institute (API), ([www.api.org](http://www.api.org))**

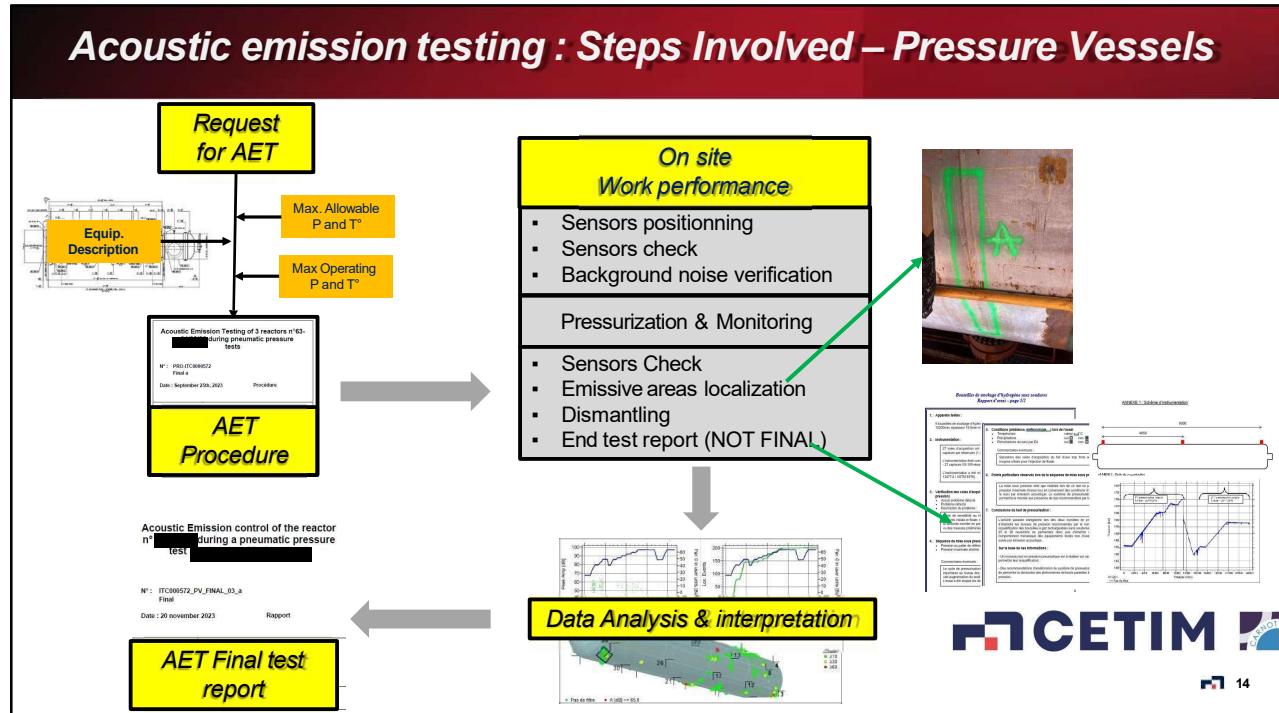
| Term         | Title                                                                                                                      | Edition | Comment                            |
|--------------|----------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------|
| ANSI/API 510 | Pressure vessel inspection code: Maintenance inspection, rating, repair and alteration (Section 6.4 "External Inspection") | 2006    | pressure vessel                    |
| API SPEC 16A | Specification for Drill Through Equipment                                                                                  | 2004    | quality assurance drilling machine |

**4 American Society of Mechanical Engineers (ASME), ([www.asme.org](http://www.asme.org))**

| Term | Title                                                                                                                                  | Edition | Comment                                              |
|------|----------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------|
| ASME | Boiler and Pressure Vessel Code<br>Section V, Article 11, Acoustic Emission Examination of Fiber Reinforced Plastic Vessels            | 2001    | pressure vessel, fiber reinforced plastic vessels    |
| ASME | Boiler and Pressure Vessel Code<br>Section V, Article 12, Acoustic Emission Examination of Metallic Vessels During Pressure Testing    | 2001    | pressure vessel, metal                               |
| ASME | Boiler and Pressure Vessel Code<br>Section V, Article 13, Continuous Acoustic Emission Monitoring                                      | 2001    | Monitoring, metal, non-metal                         |
| ASME | Boiler and Pressure Vessel Code<br>Section V, Article 29, Acoustic Emission Standards                                                  | 2001    | See ASTM E 650-97, E 976-98, E 1211-97, E 1419-96    |
| ASME | Boiler and Pressure Vessel Code<br>Terminology for Nondestructive Examinations Standards, 5. Acoustic Emission                         | 2001    | See ASTM E 1316-99                                   |
| ASME | Boiler and Pressure Vessel Code<br>Section VIII, Division 1, Case No. 1968 Use of Acoustic Emission Examination in Lieu of Radiography | 1985    | pressure vessel valid until 1991, might be not valid |

Some examples




12

28

14

# Acoustic Emission Steps involved

29



30

## Acoustic Emission Testing Major steps – Pressure Vessels



**PS**  
**Pmax AE**  
**110% PMA**  
**PMA**

*Acoustic Emission Testing – Applied Acoustic Emission Testing – Applied test pressure*

**Conditions to comply with**

- Technical conditions**  
AE testing pressure > 10% of the maximum working pressure in service (PMA)
- Regulatory conditions**  
Acoustic emission testing pressure > 110% PS in many countries (> 90% PS for France);

**Detection and location of emitting sources**

**Classification of emitting sources**

Base on detailed analysis of acoustic emission Vs criteria defined in codes and standards

15

31

## Acoustic emission testing : Results reporting Pressure Vessels

### Analysis and data interpretation (depending on local regulations/rules)

- Acoustic emission sources observed during the test are classified according to their severity :
  - Category 1: **No further action are required** but are included in the AE test report for the future tests.
  - Category 2: **Further investigations are recommended**. There may be a doubt about the harmfulness of the indication. The origin of the source must be clarified by further analysis (taking into account additional data, Supplementary Examination by NDT)
  - Category 3: Sources and / or critical areas should be subject to further investigations; **further examination by NDT is imperative before the restart of the equipment.**
- Areas and/or AE sources in categories 2 or 3 will be marked on the equipment at the end of the pneumatic test.

### Final control report

- General information : Equipment identification, date, purpose, applicable documents (procedure, specifications, codes/standards,...)
- Maximum pressure test value, Operating conditions (mapping of the position of the sensors, pressure cycle, filling procedure, type of fluid used)
- Position of the main areas of discontinuities on a diagram of the structure
- Data analysis of acoustic emission
- Interpretations of the results with the localization and the relative severity of significant acoustic emission sources
- All the criteria for the classification are indicated.
- Conclusions and suggestions
- Name, qualification and certification of operators Level 2 (writer and reader officer Level 3)
- ...



16

32

## Acoustic emission testing : Example

(Refer to 220-ALV-300)

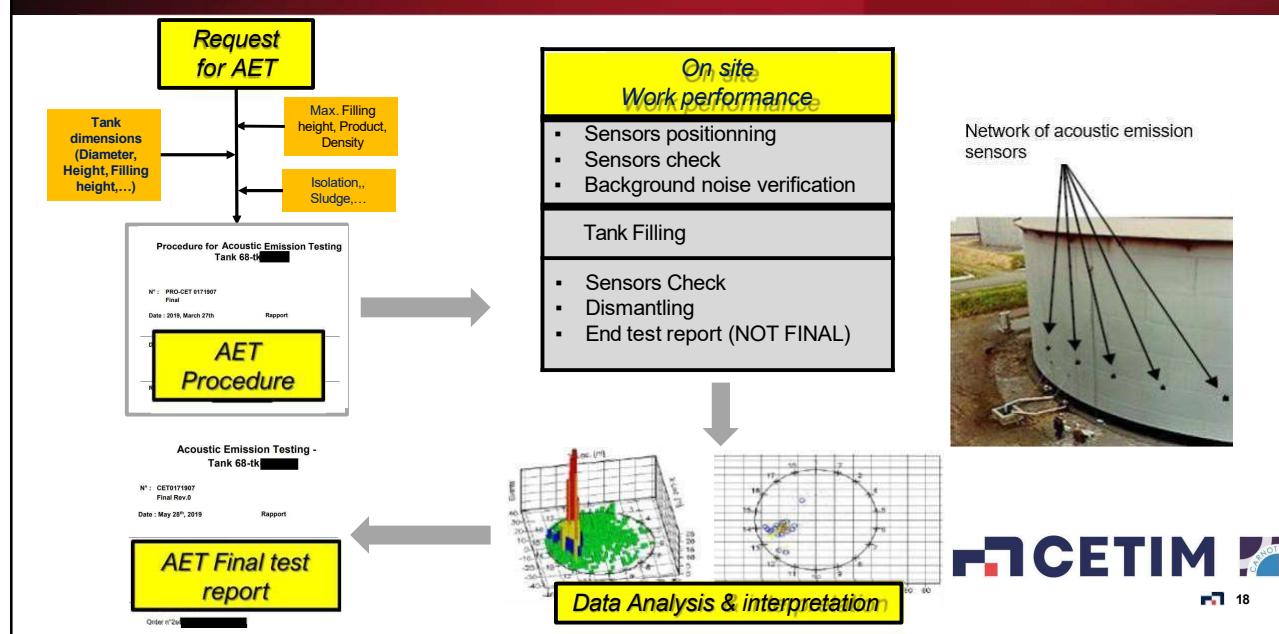
### Final control report :

#### - Content is important :

- AET can bring information on the evolution of the activity (  potential defects) from one AET control to the previous/next one
- AET controls should be performed as similarly as possible

#### - Has to comply with the requirements of the standards :

- Crucial informations are required
  - Attenuation curve
  - Sensitivity of the channels
  - Localization performance
  - Background noise evaluation,
  - ...

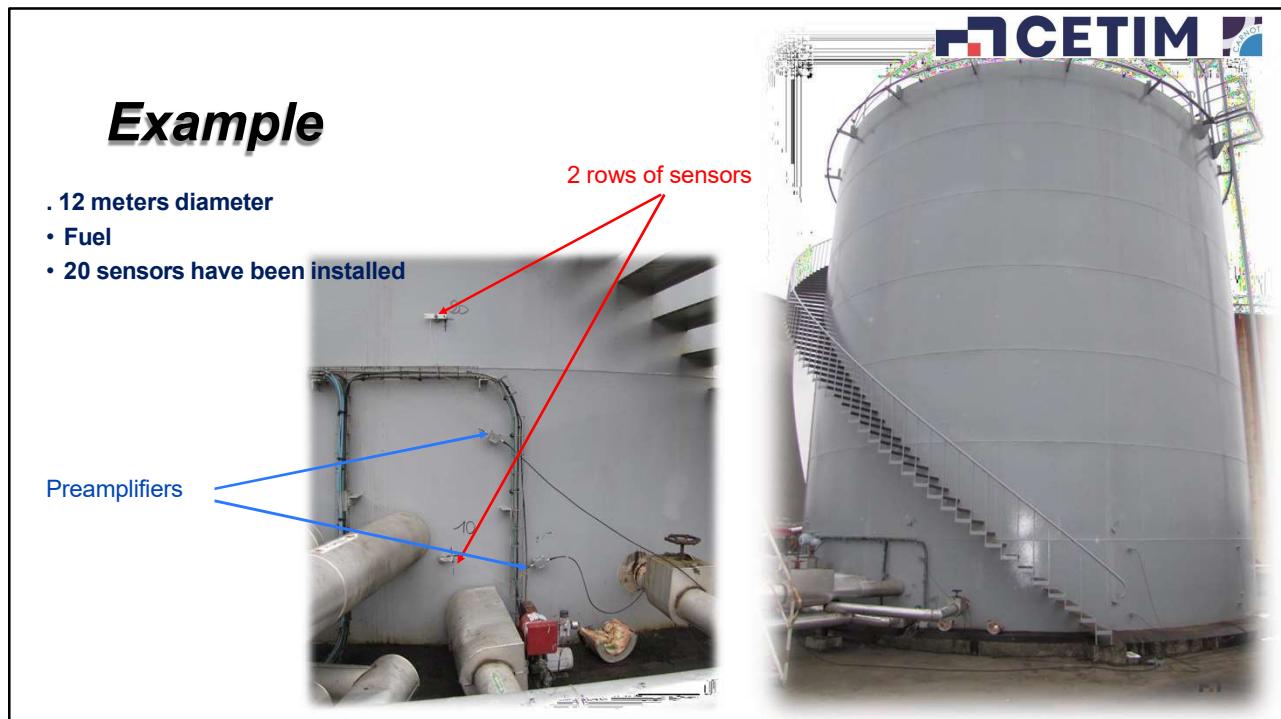

Cannot be as short as a Magnetic Particle Inspection report !



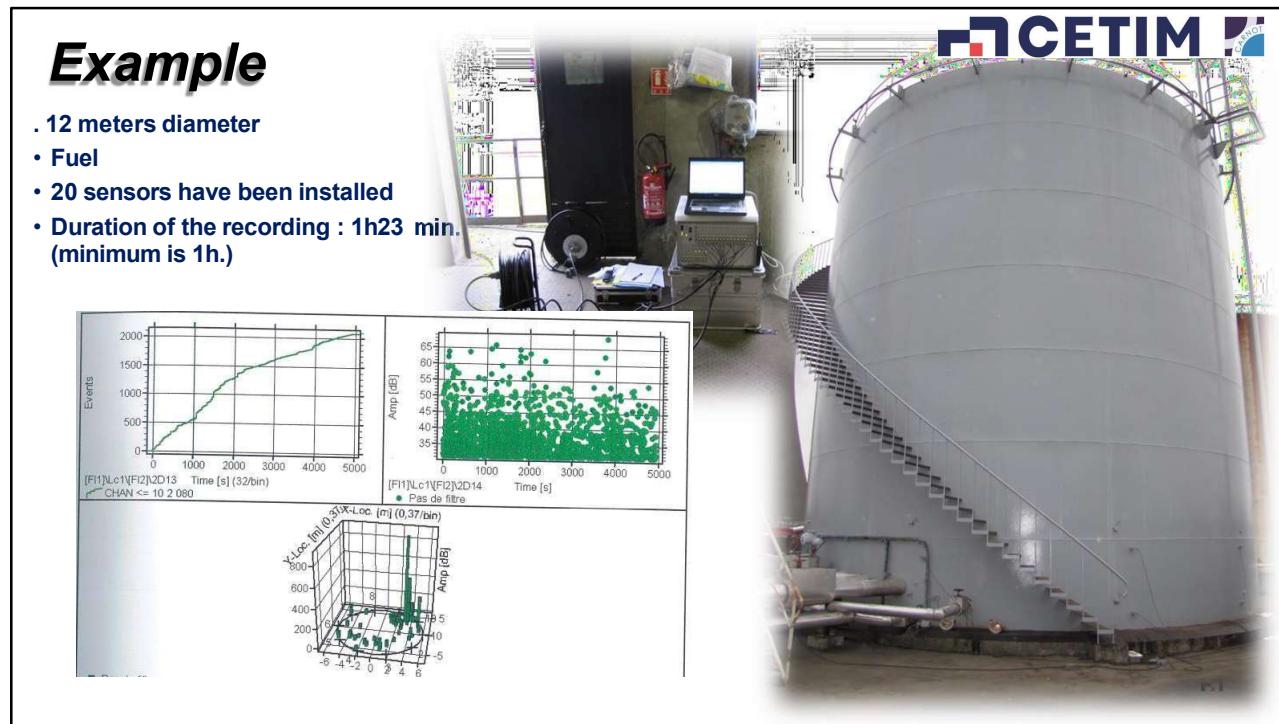
17

33

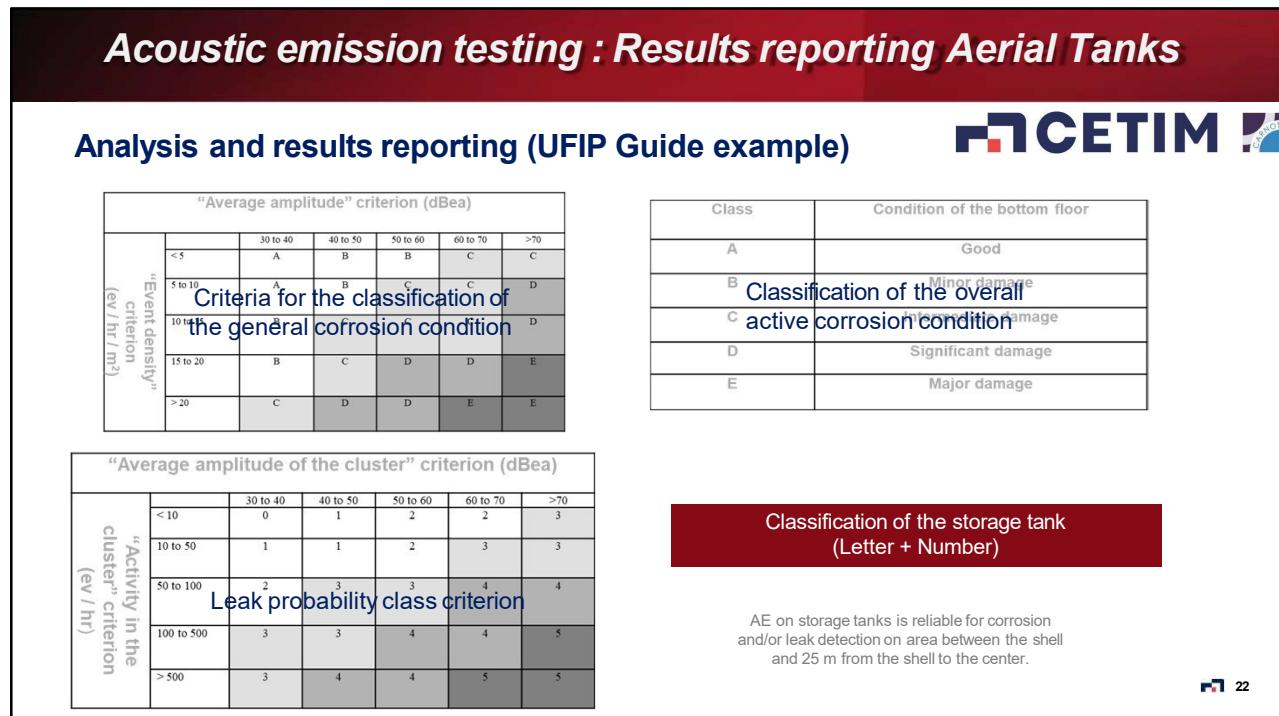
## Acoustic emission testing : Steps Involved – Storage Tank




34


17




35



36



37



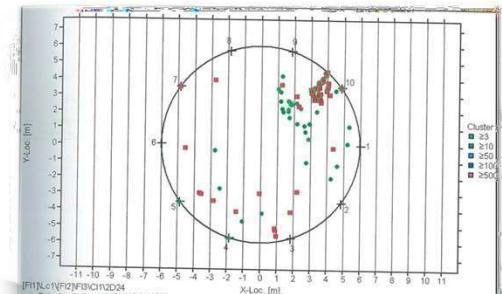
38

## Example



. 12 meters diameter

• Fuel


• 2 analysis :

- Probability of corrosion : based on activity (events) (in this case, B)
- Probability of leak : based on clustering (concentration of localized activity) : level 0 to 5 (in this case, 2, meaning low risk of leak). This analysis is described by a cartography of the bottom

Tableau 5: Echéance recommandée (ans) avant prochaine inspection hors service en l'absence de méthodologie RBI

Recommendation of 5 years  
Until the next AET

| classe<br>s | a  | b  | c | d | e |
|-------------|----|----|---|---|---|
| 0           | 10 | 10 | 7 | 3 | 2 |
| 1           | 10 | 10 | 3 | 2 | 1 |
| 2           | 10 | 5  | 2 | 2 | 1 |
| 3           | 5  | 3  | 2 | 1 | 0 |
| 4           | 2  | 1  | 1 | 0 | 0 |
| 5           | 0  | 0  | 0 | 0 | 0 |



39



## Acoustic Emission Markets and Applications

40

## PSA (Adsorbers / Gas purification)

### Use

- Purification of industrial gases (H<sub>2</sub>, Ethanol, ...)

### Advantages in applying AET

- Avoid to empty the vessels for internal inspection and/or hydraulic pressure test: Some products (Zeolite ie) inside are very expensive
- AET is easy to apply, and fast
- Drastically reduce the duration of the maintenance, therefore increasing the productivity
- Gives an accurate diagnosis of the health state / fitness-for-service

### Codes/regulation

- EN-14584
- ASME Section V – Art. 12
- French Application Guide – Annex 6 /10

❖ gas pressurization with an Inert gas is possible  
 Simultaneous AET of 2 or more PSA is possible



41

## Reactors / Fleeters

### Use

- Process of minerals refining

### Advantages in applying AET

- Avoid to empty the vessels for internal inspection and/or hydraulic pressure test : safety issues (acid products)
- Avoid to remove external insulation
- Structure is complex (important thickness + clad + liner)
- AET is easy to apply, and fast
- Drastically reduce the duration of the maintenance, therefore increasing the productivity
- Gives an accurate diagnosis of the health state / fitness-for-service

### Codes/regulation

- EN-14584
- ASME Section V – Art. 12
- French Application Guide – Annex 6 /10

❖ gas pressurization with an Inert gas is possible



42

## Reactors / Fleaters – example of result

Corrosion under insulation discovered  
thanks to AET



43

## $H_2S$ Reactor

### Use

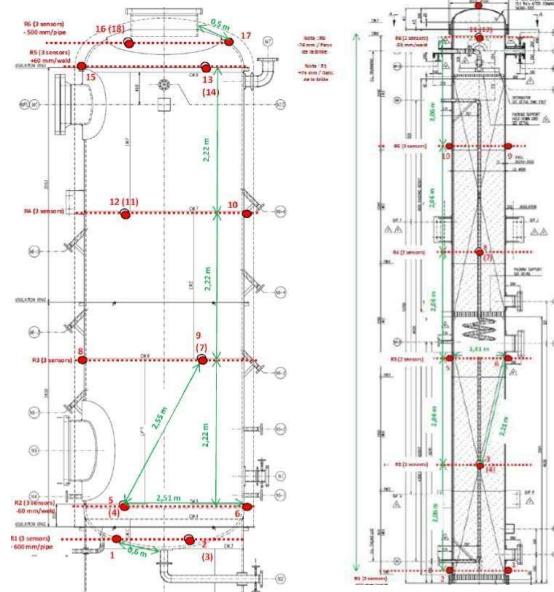
- Production of  $H_2S$

### Advantages in applying AET

- Avoid to empty the vessels for internal inspection and/or hydraulic pressure test : safety issues (acid products)
- Avoid to remove external insulation
- Structure is complex (important thickness + insulation)
- AET is adapted to the potential degradation mechanisms
- Drastically reduce the duration of the maintenance, therefore increasing the productivity
- Gives an accurate diagnosis of the health state / fitness-for-service

### Codes/regulation

- EN-14584
- ASME Section V – Art. 12
- French Application Guide – Annex 6 /10/8


❖ gas pressurization with an Inert gas is  
possible



44

## ***H<sub>2</sub>S Reactor***

## □ 2 pressure vessels controlled in one operation



45

## ***H<sub>2</sub>S Reactor***

## □ 2 pressure vessels controlled in one operation

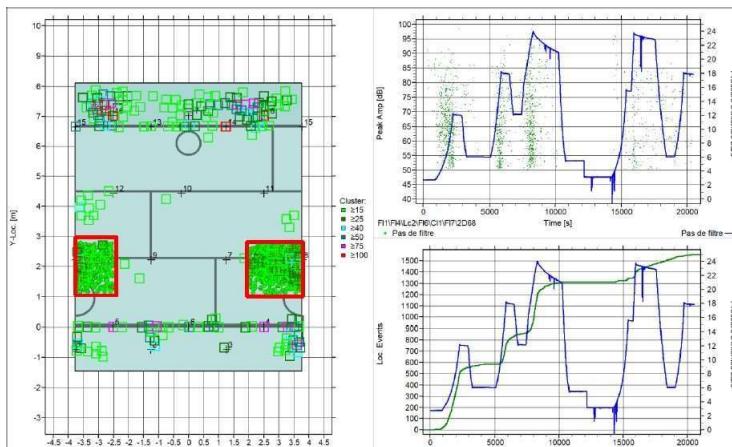
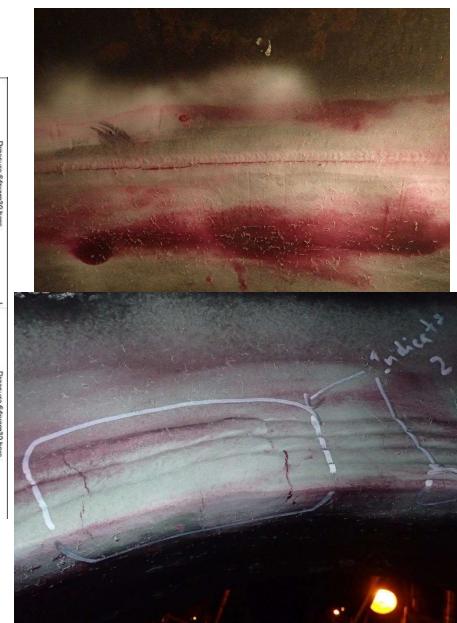
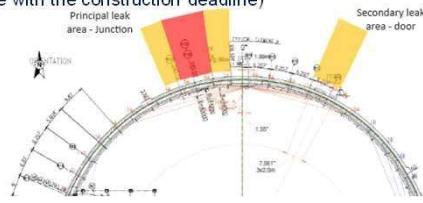




Figure n°8c: Area 'B' close to c8 sensor (N9 nozzle) (category 2)



46

## LNG Tank


### Checking leak tightness by Acoustic Emission

#### Use & Context

- LNG storage and distribution (190 000 m<sup>3</sup>. Dim 90 m x 50 m)
- Air pressure test after construction revealed leak tightness defects somewhere in the metallic liner

#### Advantages in applying AET

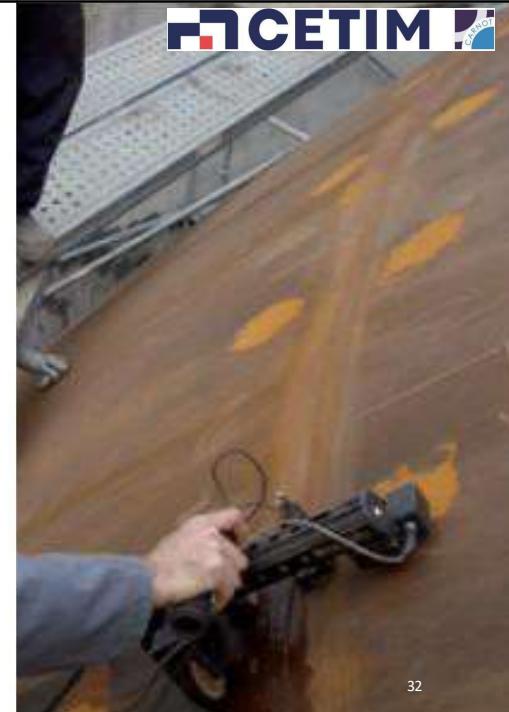
- Acoustic Emission as a global CND technique allow to identify defects areas where further local inspections can be performed
- Areas of defects localized (principal □ junction of a pipe and the liner)
- Brought response in a very short delay (3 days), compatible with the construction deadline



47

## Assessing integrity and repairability

#### Use & Context


- Spherical storage of LPG (4 000 m<sup>3</sup>)
- Carry out a global diagnosis of the storage sphere after flaws detection on welded area

#### Diagnosis carried out

- Overall acoustic emission test carried out to determine areas with flaws likely to grow
- Advanced NDT (TOFD/PAUT) to characterize detected defects
- "Boat shaped" type sample taken to understand root cause leading to flaws
- Welding repair procedure drafted.
- NDT carried on repaired areas
- Qualification of the equipment

#### Codes/regulation

- EN-14584
- ASME Section V – Art. 12
- French Application Guide – Annex 3



48

# Gas storage tanks under embankment

## Use & Context

- Spherical / Cylindrical storage tanks
- Under embankment (no more access to the vessel surface)

## AET

- Use of waveguides technology
- CETIM has developed this technology end of 90's
- A strong return of experience (necessary)

## Codes/regulation

- EN-14584
- ASME Section V – Art. 12
- French Application Guide – Annex 6
- CODAP French Guide

**CETIM** CERTE



49

# Gas storage tanks under embankment

## Use & Context

- Spherical / Cylindrical storage tanks
- Under embankment (no more access to the vessel surface)

## AET

- Use of waveguides technology
- CETIM has developed this technology end of 90's
- A strong return of experience (necessary)

## Codes/regulation

- EN-14584
- ASME Section V – Art. 12
- French Application Guide – Annex 3

**CETIM** CERTE



Gas storage spheres under sarcophagus (with wave guides)

50

# Autoclaves

## Use

- Aerospace industry (composite structure providers), Composite industry in general, Glass industry, Food industry, ...
- Small to large (1 m<sup>3</sup> to > 200 m<sup>3</sup>)

## Advantages in applying AET

- No dismantling (inside : insulation, thermal resistances, vacuum connexions, heat exchanger, ..).
- Autoclaves with external insulation can be done without removing the entire insulation
- AET is able to check the whole structure (including door and locking system)
- Drastically reduce the duration of the maintenance therefore increasing the productivity of the equipment
- Gives an accurate diagnosis of the health state / fitness-for-service

## Codes/regulation

- ASME Code Section V / Article 12
- French Application Guide – Annex 9 (specific for Autoclaves)
- EN 14584 / EN 15495

❖ Requires a good preparation (leaks could disturb AET)  
 ❖ AE sensors placement requires experience / feedback



51

# Autoclaves



**CETIM** CETIM



52

## Seamless Gas-Filled Pressure vessels (metallic)

### Use

- Distribution or storage of industrial gases

### Advantages in applying AET

- Avoid to empty the vessels for internal inspection and/or hydraulic pressure test
- AET is easy to apply, and fast
- Drastically reduce the duration of the maintenance, therefore increasing the productivity
- Gives an accurate diagnosis of the health state / fitness-for-service

### Codes/regulation

- EN-ISO 16148
- ASTM E1419 (2020)
- French Application Guide – Annex 12 (in progress)

❖ Sometimes, gas pressurization is a challenge (helium)



37

53

## Hyperbaric chambers

### Use

- Hospitals / Military

### Advantages in applying AET

- Complex structures in terms of shape
- Avoid to remove internal instrumentation and accessories
- Drastically reduce the unavailability (typically, from 2 weeks to 1 or 2 days)
- Gives an accurate diagnosis of the health state / fitness-for-service

### Codes/regulation

- EN-14584
- French Application Guide – Annex 6

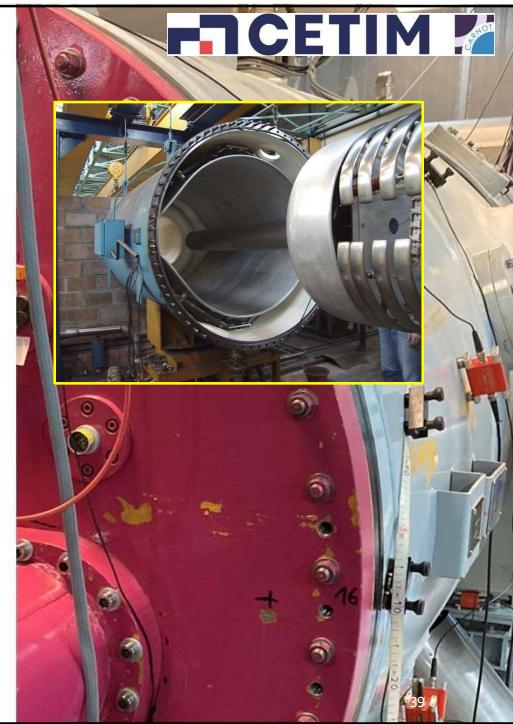
❖ CETIM is the 1<sup>st</sup> to perform AET on this type of structure



54

# Linear Accelerators

## Use


- Laboratories dealing with Particles Acceleration, also in high-tech industries (cables, electronics, ...)
- Contain SF6 gas (expensive/harmful for environment)

## Advantages in applying AET

- Avoid any dismantling of the machine (very fragile elements inside)
- Avoid SF6 gas loss
- Drastically reduce the duration of the maintenance, therefore increasing the productivity of the machine
- Gives an accurate diagnosis of the health state / fitness-for-service

## Codes/regulation

- ASME Code Section V / Article 12
- French Application Guide – Annex 6
- EN 14584 / EN 15495



55

# Sterilizer / Freeze Dryer

## Use

- Hospitals / Pharmaceutic industry / Food industry

## Advantages in applying AET

- Complex structures with double wall envelop + insulation => Diagnosis of the resistant wall is impossible from the outside
- Avoid to remove external insulation
- AET requires specific application procedure (stainless steel)
- Drastically reduce the duration of the maintenance, therefore increasing the productivity
- Gives an accurate diagnosis of the health state / fitness-for-service

## Codes/regulation

- EN-14584
- French Application Guide – Annex 6 /10

❖ AET can be now integrated into the conception of the sterilizer (waveguides)



40

56



57



58

# Acoustic Emission

## A monitoring technique

59

### *Building on experience, integrating technological developments*

#### Acoustic Emission

- A physical phenomenon defined by the **creation of transient elastic waves** resulting from multiple mechanisms: plastic deformation, propagation of cracks, erosion, corrosion, impact, leakage, cavitation, ...
- Is therefore by nature a **monitoring technique**. It is intimately linked to the behavior of the structure subjected to a stress (mechanical, thermal, chemical, ...)
- Is one of the rare techniques **to be able to detect** source phenomena **in real time**
  - ❖ **Very high potential technique in the field of Structural Monitoring**
  - ❖ **A technique that must adapt and take into account the environment of the structure**
  - ❖ **More than other techniques, requires strong expertise**

44

60